1. Introduction

Q.4.4.1.1 State criteria that an algorithm satisfies.

Answer: The following criteria are satistied by an algorithm.
\star [Input] It has n inputs, $n \geq 0$.
\star [Output] It has p outputs, $p \geq 1$.
\star [Definiteness] All the instructions are clear and unambiguous.
\star [Finiteness] It contains a finite number of instructions.
\star [Effectivenes] Each instruction must be basic and feasible.
Q.4.4.1.2 How does a program relate to an algorithm? Do all the programs become an algorithm?
Answer: A program is an expression of an algorithm, written in a computer programming language. An operating system is a complex computer program that never stops, even when the computer remains idle. It fails to satisfy the finiteness property of an algorithm.
Q.4.4.1.3 Solve the following Fibonacci recurrence relation.
$F_{n}=F_{n-1}+F_{n-2}, n=3,4,5, \ldots$
where, $F_{1}=F_{2}=1$
Answer: We shall solve the recurrence relation using ordinary generating function, given as follows:
Let $G(x)=u_{1}+u_{2} x+u_{3} x^{2}+\cdots+u_{n-1} x^{n-2}+u_{n} x^{n-1}+\ldots$ where, $u_{1}=u_{2}=1$.
Using (1.1), $\sum_{n=3}^{\infty} u_{n} x^{n}=\sum_{n=3}^{\infty} u_{n-1} x^{n}+\sum_{n=3}^{\infty} u_{n-2} x^{n}$
Then, $x \sum_{n=3}^{\infty} u_{n} x^{n-1}=x^{2} \sum_{n=3}^{\infty} u_{n-1} x^{n-2}+x^{3} \sum_{n=3}^{\infty} u_{n-2} x^{n-3}$
or, $x\left[G(x)-u_{1}-u_{2} x\right]=x^{2}\left[G(x)-u_{1}\right]+x^{3} G(x)$
or, $G(x)-u_{1}-u_{2} x=x\left[G(x)-u_{1}\right]+x^{2} G(x)$, for $x \neq 0$
or, $G(x)\left[1-x-x^{2}\right]=u_{1}+u_{2} x-u_{1} x=u_{1}=1$, since $u_{1}=u_{2}=1$
or, $G(x)=\left(1-x-x^{2}\right)^{-1}=\frac{1}{1-x-x^{2}}$
or, $G(x)=\frac{1}{(x-\alpha)(x-\beta)}$, where α, β are the roots of equation $1-x-x^{2}=0$ or, $x^{2}+x-1=0$
i.e. $\alpha=\frac{-1+\sqrt{5}}{2}, \beta=\frac{-1-\sqrt{5}}{2}$
or, $G(x)=-\frac{1}{\alpha-\beta}\left[\frac{1}{x-\alpha}-\frac{1}{x-\beta}\right]$
or, $G(x)=-\frac{1}{\sqrt{5}}\left[\frac{1}{x-\alpha}-\frac{1}{x-\beta}\right]$
or, $G(x)=+\frac{1}{\sqrt{5}}\left[\frac{1}{\alpha}\left(1-\frac{x}{\alpha}\right)^{-1}-\frac{1}{\beta}\left(1-\frac{x}{\beta}\right)^{-1}\right]$
(1.2) is an identity. We equate co-efficient of x^{n-1} on both sides.

Here, $u_{n}=$ co-efficient of x^{n-1} in the left side of (1.2)
Then, $u_{n}=\frac{1}{\sqrt{5}}\left[\frac{1}{\alpha} \cdot \frac{1}{\alpha^{n-1}}-\frac{1}{\beta} \cdot \frac{1}{\beta^{n-1}}\right]=\frac{1}{\sqrt{5}}\left[\frac{1}{\alpha^{n}}-\frac{1}{\beta^{n}}\right]$
So, $u_{n}=\frac{1}{\sqrt{5}}\left[\frac{\beta^{n}-\alpha^{n}}{(\alpha \beta)^{n}}\right]=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}$,
where $\alpha \beta=\frac{1}{4}\left((-1)^{2}-(\sqrt{5})^{2}\right)=-1$
Thus, $u_{n}=\frac{\alpha^{n}-\beta^{n}}{\sqrt{5}}=\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}}{\sqrt{5}}$
Formula (1.3) is called Binet's formula in honour of the mathematician who first proved it.
Q.4.4.1.4 Explain the following notions: algorithm validation, program verification.
Answer: Algorithm validation is a process of testing the algorithm. It requires checking correct answer for all possible inputs.
A complete proof of correctness of a program is called program verification. It involves expressing a program using a set of assertions. These assertions are normally expressed in predicate calculus.
Q.4.4.1.5 Give a non-inductive proof of the identity.
$\sum_{i=0}^{n}\left[i .\binom{n}{i}\right]=n .2^{n-1}$
Answer: Consider all the strings of n bits. Let us count the number of 1 s in all these strings.
There are $\binom{n}{i}$ strings of having $i 1 \mathrm{~s}$. Then total number of 1 s is $\sum_{i=0}^{n}\left[i .\binom{n}{i}\right]$. There are 2^{n} strings with each of them having length n. Total number of bits is $n .2^{n}$. Half of the bits are 1s. Then total number of 1 s $=\frac{1}{2} \cdot n \cdot 2^{n}=n \cdot 2^{n-1}$.
Q.4.4.1.6 Consider the following for loop structure.

```
for x = t1 to t2 step p do {
    s1;
    sn;
}
```

Here, $t 1$ and $t 2$ denote the initial and final values of variable x. At every step, the value of x is incremented by $p . s 1, \ldots, s n$ are some statements with in the body of for loop. Express the given for loop using while loop.
Answer: A equivalent code for the given for loop is expressed using a while loop.

```
x = t1;
```

```
final = t2;
while ((x - final) <= 0) do
    s1;
    ...
    sn;
    x = x + p;
}
```

Q.4.4.1.7 Write an algorithm to sort a binary array in linear time.

Answer: Let A be an array with n bimary elements. Then each element is either 0 or 1 . If we count the number of 0 s in a binary array, and put them at the beginning of the array and then put 1 s in the remaining cells, the sorting is done. We assume that array index starts from 1. Sorting algorithm SortBinary() is given below.

```
procedure SortBinary (A, n)
    zeros = 0;
    for i = 1 to n do
        if (A(i) = 0) then zeros = zeros + 1; end if
    end for
    j = 1;
    while (zeros > 0) do
        A(j) = 0; j = j + 1; zeros = zeros - 1;
    end while
    while ( j <= n) do
        A(j) = 1; j = j + 1;
    end while
end procedure
```

Q.4.4.1.8 Prove the identity on Fibonacci numbers:
$F_{n}^{2}-F_{n+1} F_{n-1}=(-1)^{n-1}, \forall n \geq 2$.
Answer: We shall prove the result by induction on n.
For $n=2, F_{2}^{2}-F_{3} F_{1}=F_{2}^{2}-\left(F_{1}+F_{2}\right) F_{1}$
$=1^{2}-(1+1) 1=-1=(-1)^{2-1}$, where $F_{2}=F_{1}=1$
Then the result is true for $n=2$.
Assume that the result is true for $n \leq k-1$. We shal show that the result is true for $n=k$.
$F_{k}^{2}-F_{k+1} F_{k-1}=F_{k}^{2}-\left(F_{k}+F_{k-1}\right) F_{k-1}$
$=\left(F_{k}-F_{k-1}\right) F_{k}-F_{k-1}^{2}=F_{k-2} F_{k}-F_{k-1}^{2}$ [Fibonacci recurrence relation]
$=-\left(F_{k-1}^{2}-F_{k-2} F_{k}\right)=(-1)(-1)^{(k-1)-1}$ [Induction hypothesis]
$=(-1)^{k-1}$

2. Complexity

Q.4.4.2.1 Explain the notions of O, Ω and Θ.

Answer: Let \mathbb{N} and \mathbb{R}^{+}be the sets of natural numbers and positive real numbers respectively. Suppose that $f, g: \mathbb{N} \rightarrow \mathbb{N}$.
$\triangleright f(n)=O(g(n))$ if there exist positive constants $c, n_{0} \in \mathbb{R}^{+}$such that for all $n \geq n_{0}, 0 \leq f(n) \leq c . g(n)$.
$\triangleright f(n)=\Omega(g(n))$ if there exist positive constants $c, n_{0} \in \mathbb{R}^{+}$such that for all $n \geq n_{0}, f(n) \geq c . g(n) \geq 0$.
$\triangleright f(n)=\Theta(g(n))$ if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$.
Q.4.4.2.2 Show that $\lceil\log n\rceil=O(n)$.

Answer: First, we shall show that $\lceil\log n\rceil \leq n$, for $n \geq 1$. We shall apply induction principle to show the inequality.
For $n=1,\lceil\log n\rceil=0$. So, the result is true for $n=1$.
For $n>1$, we assume that $\lceil\log (n-1)\rceil \leq n-1$ (induction hypothesis) Now, $\lceil\log n\rceil \leq\lceil\log (n-1)\rceil+1$
or, $\lceil\log n\rceil \leq(n-1)+1$, by induction hypothesis or, $\lceil\log n\rceil \leq n$
It implies that $\lceil\log n\rceil=O(n)$.
Here, we can take $c=1, n_{0}=1$. (See definition of big-oh in Q.4.4.2.1)
Q.4.4.2.3 Prove that $3 n\lfloor\log n\rfloor=O\left(n^{2}\right)$.

Answer: First, we shall show that $3 n\lfloor\log n\rfloor \leq 3 n^{2}$, for $n \geq 1$. We shall apply induction principle to show the inequality.
For $n=1,3 n\lfloor\log n\rfloor=0$, and $3 n^{2}=3$. So, the result is true for $n=1$.
For $n>1$, we assume that $3 n\lfloor\log (n-1)\rfloor \leq 3(n-1)^{2}$ (induction hypothesis)
Now, $3 n\lfloor\log n\rfloor \leq 3 n(\lfloor\log (n-1)\rfloor+1)$
or, $3 n\lfloor\log n\rfloor \leq 3(n-1)(\lfloor\log (n-1)\rfloor+1)+3(\lfloor\log (n-1)\rfloor+1)$
or, $3 n\lfloor\log n\rfloor \leq 3(n-1)\lfloor\log (n-1)\rfloor+3(n-1)+3(\lfloor\log (n-1)\rfloor+1)$
or, $3 n\lfloor\log n\rfloor \leq 3(n-1)^{2}+3(n-1)+3(\lfloor\log (n-1)\rfloor+1)$
(By induction hypothesis)
or, $3 n\lfloor\log n\rfloor \leq 3(n-1)^{2}+3(n-1)+3 n$ (see solution of Q.4.4.2.2)
or, $3 n\lfloor\log n\rfloor \leq 3 n^{2}-6 n+3+3 n-3+3 n$
or, $3 n\lfloor\log n\rfloor \leq 3 n^{2}$
This implies that $3 n\lfloor\log n\rfloor=O\left(n^{2}\right)$.
Here, we can take $c=3, n_{0}=1$. (See definition of big-oh in Q.4.4.2.1)
Q.4.4.2.4 Prove by induction: $\binom{n}{n / 2}=\Omega\left(2^{n} / n\right)$, for all even n

Answer: For $n=2,\binom{n}{n / 2}=\binom{2}{1}=2$.
$2^{n} / n=2^{2} / 2=2$
Thus, $\binom{n}{n / 2} \geq 2^{n} / n$, for $n=2$.
Assume that the result is true for $n=2 k$. Then $\binom{2 k}{k}=\Omega\left(2^{2 k} / 2 k\right)$.
or, $\binom{2 k}{k} \geq 2^{2 k-1} / k$
Now, we consider for $n=2 k+2$.
$\binom{2 k+2}{k+1}=\frac{(2 k+2)!}{(k+1)!(k+1)!}=\frac{(2 k+2)(2 k+1)}{(k+1)(k+1)}\binom{2 k}{k}$
$\geq \frac{(2 k+2)(2 k+1)}{(k+1)(k+1)} \cdot \frac{2^{2 k-1}}{k}$, using (2.1)
$=\frac{2 k+1}{k} \cdot \frac{2^{2 k-1}}{k+1}=\frac{2 k+1}{2 k} \cdot \frac{2^{2 k+2}}{2(k+1)}$
$=\left(1+\frac{1}{2 k}\right) \cdot \frac{2^{2 k+2}}{2 k+2} \geq \frac{2^{2 k+2}}{2 k+2}$
Induction step follows.
Thus, the result is true. Here, we take $c=1$, and $n_{0}=2$.
Note: This result can also be verified by Stirling's approximation given as follows: $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$
Q.4.4.2.5 Find the complexity of procedure $A B C()$.

```
procedure ABC (int n)
    count = 0;
    for \(\mathrm{i}=\mathrm{n}\) div 2 to n step 1 do
            for \(\mathrm{j}=1\) to n step \(2 * \mathrm{j}\) do
                for \(\mathrm{k}=1\) to n step \(2 * \mathrm{k}\) do
                    count \(=\) count +1 ;
                end for
            end for
    end for
10 end procedure
```

Answer: We shall count the frequencies of different loops. Other statements do not affect the asymptotic time complexity of the procedure. Frequencies of lines 3, 4, and 5 are in $O(n), O(\log n)$ and $O(\log n)$ respectively. Thus, the complexity of procedure $A B C()$ is $O\left(n(\log n)^{2}\right)$.
Q.4.4.2.6 Show that $7 \times 2^{n}+n^{2}=\Theta\left(2^{n}\right)$.

Answer: Refer to notion of Theta given in Q.4.4.2.1. It can be defined in another way:
The function $h(n)=\Theta(g(n))$ if and only if there exist positive constant
a, b and n_{o} such that $a \times g(n) \leq h(n) \leq b \times g(n)$, for all $n \geq n_{o}$.
Now, $7 \times 2^{n}+n^{2} \leq 10 \times 2^{n}, n \geq 1$ [See Q.4.4.2.7]
Also, $1 \times 2^{n} \leq 7 \times 2^{n}+n^{2}, n \geq 1$
Thus, $1 \times 2^{n} \leq 7 \times 2^{n}+n^{2} \leq 10 \times 2^{n}$
Here, $a=1, b=10, n_{o}=1$.
Q.4.4.2.7 Show that $n^{2} \leq 3 \times 2^{n}$, for $n \geq 1$.

Answer: We shall prove the result using the method of induction on n.
For $n=1, n^{2}=1$, and $3 \times 2^{n}=6$.
The result is true for $n=1$.
We assume that the result is true for $n=k$.
Then $k^{2} \leq 3 \times 2^{k}$ (induction hypothesis)
We need to prove that the results holds for $n=k+1$.
$(k+1)^{2}=k^{2}+2 k+1 \leq 3 \times 2^{k}+2 k+1$ (by induction hypothesis)
$<3 \times 2^{k}+2(k+1)$
$<3 \times 2^{k}+3(k+1)$
$<3 \times 2^{k}+3 \times 2^{k}$, for $k \geq 2$
$=3 \times 2^{k+1}$
Thus, the induction step follows.
Q.4.4.2.8 Show that $n^{1.001}+n \log n=\Theta\left(n^{1.001}\right)$

Answer: $c_{1} n^{1.001} \leq n^{1.001}+n \log n$, where $c_{1}=1$
Let c_{2} be 2^{1000}.
Then $c_{2} \times n^{1.001}=2^{1000} \times\left(2^{1000}\right)^{1.001}$, where $n=2^{1000}$
$=2^{1000} \times 2^{1001}$
Now, $n^{1.001}+n \log n=\left(2^{1000}\right)^{1.001}+2^{1000} \log _{2} 2^{1000}$
$=2^{1001}+1000 \times 2^{1000}=2^{1000}(2+1000)=1002 \times 2^{1000}$
Now, $c_{2} \times n^{1.001}=2^{1000} \times 2^{1001} \geq 1002 \times 2^{1000}=n^{1.001}+n l o g n$
Thus, $c_{1} \times n^{1.001} \leq n^{1.001}+n \log n \leq c_{2} \times n^{1.001}$, for $n_{0}=2^{1000}, c_{1}=1$, $c_{2}=2^{1000}$
Thus, $n^{1.001}+n \log n=\Theta\left(n^{1.001}\right)$ [See Q.4.4.2.6]
Q.4.4.2.9 Discuss the notions of o and ω with the help of examples.

Answer: $f(n)=o(g(n))$ if and only if $0 \leq f(n)<c g(n))$
for all constants $c>0, n \geq n_{0}$
For example, $4 n=o\left(n^{2}\right)$, but $4 n^{2} \neq o\left(n^{2}\right)$
In other words, $f(n)=o(g(n))$ if and only if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
$f(n)=\omega(g(n))$ if and only if $0 \leq c g(n)<f(n)$
for any positive constant $c>0, n \geq n_{0}$
For example, $4 n^{2}=\omega(n)$, but $4 n^{2} \neq \omega\left(n^{2}\right)$

3. Data Structures

Q.4.4.3.1 Suppose an array $A(1 \ldots 4,1 \ldots 3,1 \ldots 3)$ is stored at the address $(789 F)_{H}$. Let us assume that it is stored in row major form. What is the address of the $(3,2,1)$-th element?
Answer: The element of A will be stored in the following order.
$A(1,1,1) A(1,1,2) A(1,1,3) A(1,2,1) A(1,2,2) A(1,2,3) A(1,3,1) A(1,3,2) A(1,3,3$
$A(2,1,1) A(2,1,2) A(2,1,3) A(2,2,1) A(2,2,2) A(2,2,3) A(2,3,1) A(2,3,2) A(2,3$,
$A(3,1,1) A(3,1,2) A(3,1,3) \mathbf{A}(\mathbf{3}, \mathbf{2}, \mathbf{1}) A(3,2,2) A(3,2,3) A(3,3,1) A(3,3,2) A(3$,
$A(4,1,1) A(4,1,2) A(4,1,3) A(4,2,1) A(4,2,2) A(4,2,3) A(4,3,1) A(4,3,2) A(4,3$,
Assume that integer takes two bytes.
Address of $(3,2,1)$-th element $=(789 F)_{H}+[\{(3-1) \times 3 \times 3+(2-1) \times$ $3+1-1\} \times 2]_{10}$
$=(789 F)_{H}+(42)_{10}=(789 F)_{H}+(2 A)_{H}=(78 C 9)_{H}$
Note: Suffixes H represents hexadecimal number, and 10 represents decimal number.
Q.4.4.3.2 Let A and B be two lower triangular matrices, each of order $n \times n$. Devise a scheme to represent both the triangles in an array $C(1: n, 1: n+1)$.
Answer: Total number of elements in each matrix on or below diagonal $=1+2+3+\cdots+n=\frac{n(n+1)}{2}$.
The number of non-zero elements in both the matrices
$=\frac{n(n+1)}{2} \times 2=n(n+1)$.
Thus, we need a matrix of order $n \times(n+1)$ to store both the matrices together. Here C is used to store all the elements of A and B.
Let $A=\left[a_{i j}\right], B=\left[b_{i j}\right], C=\left[c_{i j}\right]$.
$c_{i j} \leftarrow a_{i j}$ for $i=1,2, \ldots, n$
$c_{i(n+1)} \leftarrow b_{i i}$ for $i=1,2, \ldots, n$
$c_{(n-j)(n+2-i)} \leftarrow b_{i j}$ for $i=2,3, \ldots, n$
Mappings for the elements in (3.3) are given below.
Row 2 of $B \xrightarrow{\text { mapped to }}$ Column n of C
Row 3 of $B \longrightarrow$ Column $(n-1)$ of C

Row 4 of $B \longrightarrow$ Column $(n-2)$ of C
In general, Row i of $B \longrightarrow$ Column $(n+2-i)$ of C
Column 1 of $B \longrightarrow$ Row ($n-1$) of C
Column 2 of $B \longrightarrow$ Row $(n-2)$ of C
Column 3 of $B \longrightarrow$ Row $(n-3)$ of C
In general, Column j of $B \longrightarrow$ Row $(n-j)$ of C
Q.4.4.3.3 Write an algorithm to find the number of occurrences of string $S 1$ in $S 2$.
Answer: We use variable count to keep the frequency of string $S 1$ in string $S 2$. We assume that a string is ended with a null character ($\backslash 0^{\prime}$) as implemented in C language. Function Occurrences() counts the number of times string $S 1$ occurs in string $S 2$.

```
function Occurrences (S1, S2)
    count = 0; i = 0; j = 0;
    while (S2(j) != '\0') do
    L: k = j;
        while (S1(i) = S2(j)) and (S1(i) != '\0') do
            i = i+1; j = j+1;
            if (S2(i) = '\0') and (S1(i) != '\0') then
                goto E;
            end if
        end while
        if (S1(i) = '\0') then
            count = count+1;
        else
            i = 0; j = k+1;
            goto L;
        end if
    end while
    E: return (count);
end function
```

When there is a match of the first character of $S 1$ with a character of $S 2$, the while loop keeps matching the charaters in $S 1$ and $S 2$. If we reach the last character of $S 1$, i.e., null character ($\left(\backslash 0^{\prime}\right)$, then we have got an instance of $S 1$ in $S 2$, and count is incremented by 1. Otherwise, the indices of $S 1$ and $S 2$, i.e., i and j respectively, are updated.
Q.4.4.3.4 Present an algorithm to reverse a circular linked list. Answer: We assume the following node structure of linked list.
structure node
int data;
structure node* link;
end structure
Note that the second field is a pointer type, and it points to a similar structure of type node as followed in C language. Algorithm Reverse() is given below to reverse a linked list pointed by head.
procedure Reverse (head)
if (head $=$ NULL) return NULL; end if
// reverse technique is same as reversing a singly linked list
prev = NULL;
current $=$ head;
repeat
next $=$ current \rightarrow link;
current \rightarrow link $=$ prev;
prev $=$ current;
current $=$ next;
until (current = head);
// adjusting the links so as to make the last node point to the first node
head \rightarrow link $=$ prev;
head = prev;
return head;
end procedure
Statements under repeat-until loop is repeated unless the current points to the node where head points to. The time complexity of Reverse() algorithm is $O(n)$, where n is the number of nodes in the circular linked list.
Q.4.4.3.5 Write a procedure to return the n-th data from the end of a linked list.
Answer: We assume the following node structure of a linked list.
structure node
int data;
structure node* next;
end structure

