
Introduction

1. Introduction

Q.4.4.1.1 State criteria that an algorithm satisfies.
Answer: The following criteria are satistied by an algorithm.

? [Input] It has n inputs, n ≥ 0.

? [Output] It has p outputs, p ≥ 1.

? [Definiteness] All the instructions are clear and unambiguous.

? [Finiteness] It contains a finite number of instructions.

? [Effectivenes] Each instruction must be basic and feasible.

Q.4.4.1.2 How does a program relate to an algorithm? Do all the pro-
grams become an algorithm?
Answer: A program is an expression of an algorithm, written in a com-
puter programming language. An operating system is a complex com-
puter program that never stops, even when the computer remains idle.
It fails to satisfy the finiteness property of an algorithm.

Q.4.4.1.3 Solve the following Fibonacci recurrence relation.
Fn = Fn−1 + Fn−2, n = 3, 4, 5, . . . (1.1)
where, F1 = F2 = 1
Answer: We shall solve the recurrence relation using ordinary generating
function, given as follows:
Let G(x) = u1 + u2x+ u3x

2 + · · ·+ un−1x
n−2 + unx

n−1 + . . .
where, u1 = u2 = 1.
Using (1.1),

∑∞
n=3 unx

n =
∑∞

n=3 un−1x
n +

∑∞
n=3 un−2x

n

Then, x
∑∞

n=3 unx
n−1 = x2

∑∞
n=3 un−1x

n−2 + x3
∑∞

n=3 un−2x
n−3

or, x[G(x)− u1 − u2x] = x2[G(x)− u1] + x3G(x)
or, G(x)− u1 − u2x = x[G(x)− u1] + x2G(x), for x 6= 0
or, G(x)[1− x− x2] = u1 + u2x− u1x = u1 = 1, since u1 = u2 = 1
or, G(x) = (1− x− x2)−1 = 1

1−x−x2
or, G(x) = 1

(x−α)(x−β) , where α, β are the roots of equation 1−x−x2 = 0

or, x2 + x− 1 = 0

i.e. α = −1+
√
5

2 , β = −1−
√
5

2
or, G(x) = − 1

α−β [1
x−α −

1
x−β]

or, G(x) = − 1√
5
[1
x−α −

1
x−β]

or, G(x) = + 1√
5
[1α(1− x

α)−1 − 1
β (1− x

β)−1] (1.2)

(1.2) is an identity. We equate co-efficient of xn−1 on both sides.

1

Introduction

Here, un = co-efficient of xn−1 in the left side of (1.2)
Then, un = 1√

5
[1α .

1
αn−1 − 1

β .
1

βn−1] = 1√
5
[1
αn − 1

βn]

So, un = 1√
5
[β

n−αn

(αβ)n] = αn−βn
√
5
,

where αβ = 1
4((−1)2 − (

√
5)2) = −1

Thus, un = αn−βn
√
5

=
(1+
√
5

2
)n−(1−

√
5

2
)n√

5
(1.3)

Formula (1.3) is called Binet’s formula in honour of the mathematician
who first proved it.

Q.4.4.1.4 Explain the following notions: algorithm validation, program
verification.
Answer: Algorithm validation is a process of testing the algorithm. It
requires checking correct answer for all possible inputs.
A complete proof of correctness of a program is called program verifica-
tion. It involves expressing a program using a set of assertions. These
assertions are normally expressed in predicate calculus.

Q.4.4.1.5 Give a non-inductive proof of the identity.∑n
i=0

[
i.
(
n
i

)]
= n.2n−1

Answer: Consider all the strings of n bits. Let us count the number of
1s in all these strings.
There are

(
n
i

)
strings of having i 1s. Then total number of 1s is

∑n
i=0

[
i.
(
n
i

)]
.

There are 2n strings with each of them having length n. Total number
of bits is n.2n. Half of the bits are 1s. Then total number of 1s
= 1

2 .n.2
n = n.2n−1.

Q.4.4.1.6 Consider the following for loop structure.

for x = t1 to t2 step p do {

s1;

...

sn;

}

Here, t1 and t2 denote the initial and final values of variable x. At every
step, the value of x is incremented by p. s1, . . . , sn are some statements
with in the body of for loop. Express the given for loop using while
loop.
Answer: A equivalent code for the given for loop is expressed using a
while loop.

x = t1;

2

Introduction

final = t2;

while ((x - final) <= 0) do

s1;

...

sn;

x = x + p;

}

Q.4.4.1.7 Write an algorithm to sort a binary array in linear time.
Answer: Let A be an array with n bimary elements. Then each element
is either 0 or 1. If we count the number of 0s in a binary array, and
put them at the beginning of the array and then put 1s in the remaining
cells, the sorting is done. We assume that array index starts from 1.
Sorting algorithm SortBinary() is given below.

procedure SortBinary (A, n)

zeros = 0;

for i = 1 to n do

if (A(i) = 0) then zeros = zeros + 1; end if

end for

j = 1;

while (zeros > 0) do

A(j) = 0; j = j + 1; zeros = zeros - 1;

end while

while (j <= n) do

A(j) = 1; j = j + 1;

end while

end procedure

Q.4.4.1.8 Prove the identity on Fibonacci numbers:
F 2
n − Fn+1Fn−1 = (−1)n−1,∀n ≥ 2.

Answer: We shall prove the result by induction on n.
For n = 2, F 2

2 − F3F1 = F 2
2 − (F1 + F2)F1

= 12 − (1 + 1)1 = −1 = (−1)2−1, where F2 = F1 = 1
Then the result is true for n = 2.
Assume that the result is true for n ≤ k − 1. We shal show that the
result is true for n = k.
F 2
k − Fk+1Fk−1 = F 2

k − (Fk + Fk−1)Fk−1
= (Fk−Fk−1)Fk−F 2

k−1 = Fk−2Fk−F 2
k−1 [Fibonacci recurrence relation]

= −(F 2
k−1 − Fk−2Fk) = (−1)(−1)(k−1)−1 [Induction hypothesis]

= (−1)k−1

3

Complexity

2. Complexity

Q.4.4.2.1 Explain the notions of O, Ω and Θ.
Answer: Let N and R+ be the sets of natural numbers and positive real
numbers respectively. Suppose that f, g : N→ N.
. f(n) = O(g(n)) if there exist positive constants c, n0 ∈ R+ such that
for all n ≥ n0, 0 ≤ f(n) ≤ c.g(n).
. f(n) = Ω(g(n)) if there exist positive constants c, n0 ∈ R+ such that
for all n ≥ n0, f(n) ≥ c.g(n) ≥ 0.
. f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) = Ω(g(n)).

Q.4.4.2.2 Show that dlog ne = O(n).
Answer: First, we shall show that dlog ne ≤ n, for n ≥ 1. We shall apply
induction principle to show the inequality.
For n = 1, dlog ne = 0. So, the result is true for n = 1.
For n > 1, we assume that dlog (n− 1)e ≤ n− 1 (induction hypothesis)
Now, dlog ne ≤ dlog (n− 1)e+ 1
or, dlog ne ≤ (n− 1) + 1, by induction hypothesis
or, dlog ne ≤ n
It implies that dlog ne = O(n).
Here, we can take c = 1, n0 = 1. (See definition of big-oh in Q.4.4.2.1)

Q.4.4.2.3 Prove that 3nblog nc = O(n2).
Answer: First, we shall show that 3nblog nc ≤ 3n2, for n ≥ 1. We shall
apply induction principle to show the inequality.
For n = 1, 3nblog nc = 0, and 3n2 = 3. So, the result is true for n = 1.
For n > 1, we assume that 3nblog (n − 1)c ≤ 3(n − 1)2 (induction hy-
pothesis)
Now, 3nblog nc ≤ 3n(blog (n− 1)c+ 1)
or, 3nblog nc ≤ 3(n− 1)(blog (n− 1)c+ 1) + 3(blog (n− 1)c+ 1)
or, 3nblog nc ≤ 3(n− 1)blog (n− 1)c+ 3(n− 1) + 3(blog (n− 1)c+ 1)
or, 3nblog nc ≤ 3(n− 1)2 + 3(n− 1) + 3(blog (n− 1)c+ 1)
(By induction hypothesis)
or, 3nblog nc ≤ 3(n− 1)2 + 3(n− 1) + 3n (see solution of Q.4.4.2.2)
or, 3nblog nc ≤ 3n2 − 6n+ 3 + 3n− 3 + 3n
or, 3nblog nc ≤ 3n2

This implies that 3nblog nc = O(n2).
Here, we can take c = 3, n0 = 1. (See definition of big-oh in Q.4.4.2.1)

9

Complexity

Q.4.4.2.4 Prove by induction:
(
n
n/2

)
= Ω (2n/n), for all even n

Answer: For n = 2,
(
n
n/2

)
=
(
2
1

)
= 2.

2n/n = 22/2 = 2
Thus,

(
n
n/2

)
≥ 2n/n, for n = 2.

Assume that the result is true for n = 2k. Then
(
2k
k

)
= Ω

(
22k/2k

)
.

or,
(
2k
k

)
≥ 22k−1/k (2.1)

Now, we consider for n = 2k + 2.(
2k+2
k+1

)
= (2k+2)!

(k+1)!(k+1)! = (2k+2)(2k+1)
(k+1)(k+1)

(
2k
k

)
≥ (2k+2)(2k+1)

(k+1)(k+1) .
22k−1

k , using (2.1)

= 2k+1
k .2

2k−1

k+1 = 2k+1
2k . 2

2k+2

2(k+1)

=
(
1 + 1

2k

)
.2

2k+2

2k+2 ≥
22k+2

2k+2
Induction step follows.
Thus, the result is true. Here, we take c = 1, and n0 = 2.
Note: This result can also be verified by Stirling’s approximation given
as follows: n! ∼

√
2πn

(
n
e

)n
Q.4.4.2.5 Find the complexity of procedure ABC().

1 procedure ABC (int n)

2 count = 0;

3 for i = n div 2 to n step 1 do

4 for j = 1 to n step 2*j do

5 for k = 1 to n step 2*k do

6 count = count + 1;

7 end for

8 end for

9 end for

10 end procedure

Answer: We shall count the frequencies of different loops. Other state-
ments do not affect the asymptotic time complexity of the procedure.
Frequencies of lines 3, 4, and 5 are in O(n), O(log n) and O(log n) re-
spectively. Thus, the complexity of procedure ABC() is O(n(log n)2).

Q.4.4.2.6 Show that 7× 2n + n2 = Θ(2n).
Answer: Refer to notion of Theta given in Q.4.4.2.1. It can be defined
in another way:
The function h(n) = Θ(g(n)) if and only if there exist positive constant

10

Complexity

a, b and no such that a× g(n) ≤ h(n) ≤ b× g(n), for all n ≥ no.
Now, 7× 2n + n2 ≤ 10× 2n, n ≥ 1 [See Q.4.4.2.7]
Also, 1× 2n ≤ 7× 2n + n2, n ≥ 1
Thus, 1× 2n ≤ 7× 2n + n2 ≤ 10× 2n

Here, a = 1, b = 10, no = 1.

Q.4.4.2.7 Show that n2 ≤ 3× 2n, for n ≥ 1.
Answer: We shall prove the result using the method of induction on n.
For n = 1, n2 = 1, and 3× 2n = 6.
The result is true for n = 1.
We assume that the result is true for n = k.
Then k2 ≤ 3× 2k (induction hypothesis)
We need to prove that the results holds for n = k + 1.
(k + 1)2 = k2 + 2k + 1 ≤ 3× 2k + 2k + 1 (by induction hypothesis)
< 3× 2k + 2(k + 1)
< 3× 2k + 3(k + 1)
< 3× 2k + 3× 2k, for k ≥ 2
= 3× 2k+1

Thus, the induction step follows.

Q.4.4.2.8 Show that n1.001 + nlogn = Θ(n1.001)
Answer: c1n

1.001 ≤ n1.001 + nlogn, where c1 = 1
Let c2 be 21000.
Then c2 × n1.001 = 21000 × (21000)1.001, where n = 21000

= 21000 × 21001

Now, n1.001 + nlogn=(21000)1.001 + 21000log22
1000

= 21001 + 1000 ×21000=21000(2 + 1000) = 1002 ×21000

Now, c2 × n1.001 = 21000 × 21001 ≥ 1002× 21000 = n1.001+ nlogn
Thus, c1 × n1.001 ≤ n1.001 + nlogn ≤ c2 × n1.001, for n0 = 21000, c1 = 1,
c2 = 21000

Thus, n1.001 + nlogn = Θ (n1.001) [See Q.4.4.2.6]

Q.4.4.2.9 Discuss the notions of o and ω with the help of examples.
Answer: f(n) = o(g(n)) if and only if 0 ≤ f(n) < cg(n))
for all constants c > 0, n ≥ n0
For example, 4n = o(n2), but 4n2 6= o(n2)

In other words, f(n) = o(g(n)) if and only if limn→∞
f(n)
g(n) = 0

f(n) = ω(g(n)) if and only if 0 ≤ cg(n) < f(n)
for any positive constant c > 0, n ≥ n0
For example, 4n2 = ω(n), but 4n2 6= ω(n2)

11

Data Structures

3. Data Structures

Q.4.4.3.1 Suppose an array A(1 . . . 4, 1 . . . 3, 1 . . . 3) is stored at the ad-
dress (789F)H . Let us assume that it is stored in row major form. What
is the address of the (3, 2, 1)-th element?
Answer: The element of A will be stored in the following order.
A(1, 1, 1)A(1, 1, 2)A(1, 1, 3)A(1, 2, 1)A(1, 2, 2)A(1, 2, 3)A(1, 3, 1)A(1, 3, 2)A(1, 3, 3)
A(2, 1, 1)A(2, 1, 2)A(2, 1, 3)A(2, 2, 1)A(2, 2, 2)A(2, 2, 3)A(2, 3, 1)A(2, 3, 2)A(2, 3, 3)
A(3, 1, 1)A(3, 1, 2)A(3, 1, 3)A(3, 2, 1)A(3, 2, 2)A(3, 2, 3)A(3, 3, 1)A(3, 3, 2)A(3, 3, 3)
A(4, 1, 1)A(4, 1, 2)A(4, 1, 3)A(4, 2, 1)A(4, 2, 2)A(4, 2, 3)A(4, 3, 1)A(4, 3, 2)A(4, 3, 3)
Assume that integer takes two bytes.
Address of (3, 2, 1)-th element = (789F)H + [{(3− 1)× 3× 3 + (2− 1)×
3 + 1− 1} × 2]10
= (789F)H + (42)10 = (789F)H + (2A)H = (78C9)H
Note: Suffixes H represents hexadecimal number, and 10 represents dec-
imal number.

Q.4.4.3.2 Let A and B be two lower triangular matrices, each of or-
der n × n. Devise a scheme to represent both the triangles in an array
C(1 : n, 1 : n+ 1).
Answer: Total number of elements in each matrix on or below diagonal
= 1 + 2 + 3 + · · ·+ n = n(n+1)

2 .
The number of non-zero elements in both the matrices
= n(n+1)

2 × 2 = n(n+ 1).
Thus, we need a matrix of order n× (n+ 1) to store both the matrices
together. Here C is used to store all the elements of A and B.
Let A = [aij], B = [bij], C = [cij].

cij ← aij
for i = 1, 2, . . . , n
for j = 1, 2, . . . , n

(3.1)

ci(n+1) ← bii for i = 1, 2, . . . , n (3.2)

c(n−j)(n+2−i) ← bij
for i = 2, 3, . . . , n
for j = 1, 2, . . . , (i− 1)

(3.3)

Mappings for the elements in (3.3) are given below.

Row 2 of B
mapped to−−−−−−→ Column n of C

Row 3 of B −−−−−−−−→ Column (n− 1) of C

15

Data Structures

Row 4 of B −−−−−−−−→ Column (n− 2) of C
. . .
In general, Row i of B −−−−−−−−→ Column (n+ 2− i) of C
Column 1 of B −−−−−−−−→ Row (n− 1) of C
Column 2 of B −−−−−−−−→ Row (n− 2) of C
Column 3 of B −−−−−−−−→ Row (n− 3) of C
. . .
In general, Column j of B −−−−−−−−→ Row (n− j) of C

Q.4.4.3.3 Write an algorithm to find the number of occurrences of string
S1 in S2.
Answer: We use variable count to keep the frequency of string S1 in
string S2. We assume that a string is ended with a null character (′\0′)
as implemented in C language. Function Occurrences() counts the num-
ber of times string S1 occurs in string S2.

function Occurrences (S1, S2)

count = 0; i = 0; j = 0;

while (S2(j) != ’\0’) do

L: k = j;

while (S1(i) = S2(j)) and (S1(i) != ’\0’) do

i = i+1; j = j+1;

if (S2(i) = ’\0’) and (S1(i) != ’\0’) then

goto E;

end if

end while

if (S1(i) = ’\0’) then

count = count+1;

else

i = 0; j = k+1;

goto L;

end if

end while

E: return (count);

end function

When there is a match of the first character of S1 with a character of
S2, the while loop keeps matching the charaters in S1 and S2. If we
reach the last character of S1, i.e., null character (′\0′), then we have
got an instance of S1 in S2, and count is incremented by 1. Otherwise,
the indices of S1 and S2, i.e., i and j respectively, are updated.

16

Data Structures

Q.4.4.3.4 Present an algorithm to reverse a circular linked list.
Answer: We assume the following node structure of linked list.

structure node
int data;
structure node* link;

end structure

Note that the second field is a pointer type, and it points to a similar
structure of type node as followed in C language. Algorithm Reverse()
is given below to reverse a linked list pointed by head.

procedure Reverse (head)
if (head = NULL) return NULL; end if
// reverse technique is same as reversing a singly linked list
prev = NULL;
current = head;
repeat

next = current→link;
current→link = prev;
prev = current;
current = next;

until (current = head);
// adjusting the links so as to make the last node point to the first node
head→link = prev;
head = prev;
return head;

end procedure

Statements under repeat-until loop is repeated unless the current points
to the node where head points to. The time complexity of Reverse() al-
gorithm is O(n), where n is the number of nodes in the circular linked list.

Q.4.4.3.5 Write a procedure to return the n-th data from the end of
a linked list.
Answer: We assume the following node structure of a linked list.

structure node
int data;
structure node* next;

end structure

17

